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ABSTRACT 

Let K be a field such that  all Sylow subgroups  of its absolute Galois group 

GK are infinite. Let X be a smooth  variety over K with function field F 

and Y --* X the normalisation in a finite, separable extension ElF. We 

show: If there is a closed point x E X which does not split completely in 

Y ---* X,  then the set of these points is Zariski dense in X.  

1. I n t r o d u c t i o n  

Let C be a curve over a field K.  In order to develop the class field theory of C, 

the covers of C need to be examined locally and this information collected into 

global information (e.g. see [6] for a p-adic field K) .  This approach is limited to 

covers of C with nontrivial local behaviour. The covers of C which cannot be 

treated in this manner are those in which all closed points split completely. The 

function field extension associated with such a cover is called a c.s. extension. 

The compositum of two finite c.s. extensions of a function field F is again 

a c.s. extension. Thus one is led to consider the composi tum Fc.s. of all fi- 

nite c.s. extensions of F.  In [6, Theorem 7.1 (2)], Saito describes the group 

Gal(Fc.s. IF) in the case that  F is a function field of one variable over a local 

field K.  He shows that  it is isomorphic to the profinite completion of the fun- 

damental group of the dual graph of a suitable reduction of the non-singular 

projective model X of F.  

An important  step in Saito's proof is [6, Theorem 7.1 (1)]. We prove the 

following generalisation of this result: Let K be a field such that  all Sylow 
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subgroups of its absolute Galois group GK are infinite. Let X be a smooth, 

irreducible variety over K with function field F.  Let Y -* X be the normalisa- 

tion of X in a finite, separable extension ElF. If  there is a closed point x E X 

which is not completely split in Y --* X,  then the set of these points is Zariski 

dense in X.  For K a local field and d i m X  -- 1 this is Saito's result [6, Theorem 

7.1 (1)]. 

Our proof of the general case is more elementary than Saito's proof which 

uses the arithmetic of local fields, in particular the class field theory of complete 

two dimensional local rings. 

The hypothesis that  all Sylow groups are infinite means that  K is "not too 

large" in a certain sense. For example, all Hilbertian fields have this property. 

Note that  for Hilbertian fields the existence of non-split points is guaranteed 

(see Remark 3). Therefore our theorem can be viewed as a generalisation of 

properties of Hilbertian fields. 

We define a c.s. cover to be a finite cover Y -* X of a smooth variety X over 

K such that  every closed point of X splits completely in Y. Our main theorem 

implies that  this is a birational property, i.e., depends only on the corresponding 

function field extension, provided that  all Sylow subgroups of GK are infinite. 

Notation: K is a field with absolute Galois group GK. For most of the paper 

we assume that  all Sylow subgroups of GK are infinite. 

2. T h e  m a i n  r e s u l t  

A variety over a field K is an integral, separated scheme of finite type over 

Spec K.  A f u n c t i o n  field over K is a finitely generated, separable extension 

of K.  Unless stated otherwise, all varieties and function fields will be over K.  

Let Y --* X be a finite cover of normal varieties. Then a closed point x E X is 

c o m p l e t e l y  sp l i t  in Y --* X if the number of closed points of Y over x equals 

the degree of Y -~ X.  

THEOREM 1: Let K be a field such that all Sylow subgroups Of GK a r e  infinite. 

Let X be a smooth variety over K with function field F. Let ElF be a finite 

separable extension and Y the normalisation of X in ElF. If there is a dosed 

point of X which does not split completely in Y --* X then the set of these 

points is Zariski dense in X.  

The hypothesis that  all Sylow groups are infinite means that  K is "not too 

large" in a certain sense. For example, all Hilbertian fields have this property. 

Note that  for Hilbertian fields the existence of non-split points is guaranteed 
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(see Remark 3). Therefore the theorem can be viewed as a generalisation of 

properties of Hilbertian fields. 

COROLLARY 2: Let K be a field such that all Sylow subgroups of GK are 

infinite. Let E lF  be a finite separable extension of function fields over K .  Then 

the following are equivalent: 

1. There exists a smooth variety X over K with function field F such that  

every closed point of X splits completely in the normalisation of X in E. 

2. The same holds for all smooth varieties X over K with function field F. 

If the equivalent conditions (1) and (2) hold, we say E]F is a c.s. e x t e n s i o n  

(completely split extension). 

Proof (of the corollary): Let X '  C X be a non-empty open subvariety. If all 

closed points of X '  split completely in Y then the same holds for X by Theorem 

1. The claim follows because any two varieties with the same function field have 

isomorphic open subvarieties. | 

Lemma 5 (5) implies that  the compositum of two c.s. extensions of F is again a 

c.s. extension. Thus we are led to consider the composi tum Fc.s. [F of all (finite) 

c.s. extensions of F,  which we call the m a x i m a l  c.s. e x t e n s i o n  of F.  This 

generalises the definition of Saito [6, Theorem 7.1] in the case that  F is a function 

field of one variable over a local field. In this case, Gal(Fc.s.]F) = 7q(F) is the 

profinite completion of the fundamental group of the dual graph of a suitable 

reduction of the non-singular projective model X of F.  

Remark 3: Assume that all Sylow subgroups of G g are infinite, and K is either 

Hilbertian, PAC or finite. Then Fc.s. = F.  

Proof: Let E[F and Y ~ X as in Theorem 1 with E ~ F.  We have to show 

there is a closed point of X which does not split completely in Y. By Lemma 

5, (1), (3), we may assume E[F is Galois of prime degree p. Let G = Gal(EIF ). 

Let K be Hilbertian. Choose a separating transcendency base t l , . . . , t d  for 

FIK. The finite separable field extension F [ K ( t l , . . . ,  td) induces a rational map 

X --* p d .  Consider the composition f :  Y --~ X --* pal. By the Hilbert property 

of K there is a K-rat ional  point z E Pd g where f is defined and such that  z 

has only one point of Y over it. Then the point x of X over z has only o~m 

pre-image in Y. 

Let K be PAC such that  the absolute Galois group of K has infinite Sylow 

subgroups. We may assume K is the field of constants of F.  Let L be the field of 

constants of E. If L ~ K then all K-rat ional  points of X do not split completely 
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in Y. Now assume L = K. There are algebraic extensions K " I K ' I K  such that  

K " I K  r is Galois of degree p. We have Gal (EKr lFK  ') = Gal(EIF ). Therefore 

by Lemma 5 (4), we may assume K t = K.  By the field crossing argument (see 

[2, proof of Lemma 24.1.1] or [3, Lemma 1]) there is a K-rational point of X 

with residue field extension K " [ K  in Y --* X. 

If K is finite, let L[K be the Galois extension with group I-Iz#pZ/l. Then 

E L  ~ FL .  By Lemma 5 (4) we may replace K by L. But L is PAC by 

[2, Corollary 11.2.4] and its absolute Galois group has infinite Sylow groups. 

1 

Remark 4: (a) Note that  even in the PAC case, the point of X that  doesn't 

split completely in Y need not be K-rational: If K has no Galois extension of 

degree p and Y -* X is Galois of degree p, then any K-rational point of X splits 

completely in Y. 

(b) Let K be perfect, not PAC, and GK ~- Zp (then K is ample by  [4]). Let 

L[K be the unique Galois extension of degree p. Let X be a smooth absolutely 

irreducible K-variety without a K-rational point. Then the residue field of every 

closed point of X contains L. Let XL = X x g n. Then all closed points of X 

split completely in XL ---* X .  Hence Fc.s. r F.  

(c) Here we show that  the assumption made on GK in Theorem 1 that  all 

Sylow subgroups are infinite is necessary. Note first that  a p-Sylow subgroup of 

GK is infinite, iff it is nontrivial and not of order 2 if p -- 2. 

Let Y --* X be a ramified Galois cover of degree p. Clearly the ramified points 

do not split completely. Conversely, an unramified point splits completely, if its 

residue field has no extension of degree p. 

Therefore it suffices to construct X such that  none of the residue fields of the 

closed points has an extension of degree p. If the p-Sylow subgroup of GK is 

trivial, this is the case for all X.  

I f p  = 2 and the 2-Sylow subgroup of GK has order 2, then K is formally real. 

Let X be the curve with equation u 2 + v 2 + 1 = 0. None of the residue fields is 

formally real. Therefore, none of them has an extension of degree 2. 

3. T h e  p r o o f  o f  T h e o r e m  1 

LEMMA 5: Let X be a smooth variety over K with function field F.  Let E[F 

be a finite separable extension of degree n and Y the normalization of X in 

E[F. Let x E X be a closed point. 
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1. Let E'[E be a finite separable extension and Y '  the normalization of Y in 

E t. Then x splits completely in Y~ --* X ,  i f  and only i f x  splits completely 

in Y --~ X and every pre-image of x in Y splits completely in Y '  --* Y .  

2. Suppose E l F  is Galois with group G. Then x splits completely in Y i f  

and only if  the decomposition group Gy is trivial for any dosed point g of 

Y over x. 

3. L e t / ~  be the Galois closure of E[F and ~z the normalisation of X in F,. 

Then x splits completely in Y -+ X i f  and only i f  it splits completely in 

?--+ X. 
4. Let F '[F be a finite extension and E'  = E F  t the compositum (in some 

algebraic closure of F).  Let X ~ and Y '  be the normalisations of X in F ~ 

and E'. I f  x splits completely in Y --+ X then every pre-image of  z in X '  

splits completely in Y '  --~ X ' .  

5. Assume in (4) additionally that F ' [F is separable. Then x splits con]- 

pletely in Y '  if  and only i f  it splits completely in Y and X ' .  

Proof." 

1. Let m = deg(Y'[Y). Then d e g ( r ' [ x )  = ran. The point x has m n  pre- 

images on Y~ iff x has n pre-images on Y and each pre-image of x on Y 

has m pre-images on Y~. 

2. It  is well-known that  G acts transitively on the closed points y of Y over 

x. Therefore, the number of these points is n = IG[ if and only if all 

decomposition groups are trivial. 

3. Let G = Gal(~TIF ) and H = Gal(/~IE ). Let ~ be a point of 1~ over x. The 

points of I~ (resp., Y) over x correspond to the coset space G / G  O (resp., 

the orbits of H on this coset space). The orbits of H on G /G  O correspond 

to the double coset space H \ G / G  O. 

Assume now x splits completely in Y, i.e. IH\G/GoI = n = [G: g ] .  This 

implies G 0 < H.  Then G 0 is also contained in all conjugates of H in G, 

hence in their intersection. This intersection is trivial because /~  is the 

Galois closure of ElF.  Therefore G o = 1, i.e., x splits completely in 1~. 

The converse follows from (1). 

4. By (3) we may assume E l F  is Galois. Then also E~IF ~ is Galois and 

G '  := G a l ( E ' I F '  ) embeds into G := G a l ( E I F  ) via restriction to E.  Under 

this embedding, the decomposition group in G 1 of a point of Y~ embeds 

into the decomposition group of its image in Y. By (2) this implies the 

claim. 

5. This follows fi'om (1) and (4). | 



56 G. WIESEND Isr. J. Math. 

Proof  of Theorem 1: In this proof "point" means closed point of a variety. The 

proof of Theorem 1 consists of a series of reduction steps to the following special 

cases:  

�9 K is the exact field of constants of X. 

�9 K is perfect: If p = char(K),  let Kinsep := Un K1/p'~ be the maximal 

algebraic inseparable extension of K. ginse p is perfect. Define X J resp. 

YJ as the normalisation of X resp. Y in f g i n s e  p resp. Eginsep. The maps 

X J --~ X and Y~ --* Y are radicial and hence induce bijections on the sets 

of closed points (cf. [5, II Remark 3.17]). A point x' e X '  is completely 

split in Yt[X~, iff its image x on X is completely split in Y --* X. Now 

replace X by X ~ and K by ginse p. Note that  for perfect K a variety is 

smooth iff it is regular. 

�9 Let F0 be an intermediate field of ElF and X0 the normalisation of X in 

F0. Then we may assume that  all these finitely many X0 are regular: 

Delete from X the images of the singular loci of all the X0. We have 

to show that  there still is a point of X that  does not split completely in 

Y. This is guaranteed if the original point x was unramified in Y --* X, 

because then its pre-images in X0 were regular. 

On the other hand, if x was ramified, then we may replace x by any other 

ramified point. The purity of the branch locus ([1, X.3.1]) says that the 

branch locus Ram(Y --~ X) has pure codimension 1 in X. But as X0 is 

normal the singular locus of X0 has codimension 2 in X0 and therefore 

the cover Y --* X is still ramified after deleting the singular loci. 

�9 EtF is Galois: L e t / ~ ] F  be the Galois closure of ElF. By Lemma 5 (3) 

we may replace ElF by/~IF .  

�9 ElF has prime degree p: Let y be a point of Y over x. Let G v be the 

(nontrivial) decomposition group of y in Gal(E[F).  There is a subgroup 

Go <_ G v of prime order p. Let F0 be the fixed field of Go. The extension 

E[Fo is Galois of degree p. Let X0 be the normalisation of X in F0. The 

construction of X0 implies that  the image of y in X0 is not completely 

split in Y --* Xo. If a point in Xo does not completely split in Y ~ X0, 

then its image in X does not completely split in Y --~ X. Now replace X 

byX0. 
�9 The point x is a K-rational point on X: The residue field L = n(x) of x 

is a finite extension of K.  This is separable, because K is perfect. Let 

YL ---* XL be the cover obtained by base change from K to L. There is a 

point XL over x in XL, which has residue field L. This point XL does not 
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split completely in YL ~ X L .  The variety XL is regular, because XL ~ X 
is ~tale. If a point in XL does not split completely in YL ~ XL then its 

image in X does not split completely in Y --* X.  Now replace Y --* X by 

YL "-'> XL- 
�9 The field K has a Galois extension LIK of degree p: If  x is unramified 

in Y --* X then the residue extension gives such an L. If  x is ramified 

in Y --* X,  we may replace E --* F by E M ] F M  where M is a finite 

separable extension of K (by Lemma 5 (4)). The assumption tha t  the 

p-Sylow subgroup of GK is infinite guarantees that  there is such an M, 

which has a Galois extension of degree p. 

�9 E ~ F |  L: If this is not the case, then consider the composite field 

EL = EL. Let FL = FL. The extension ELIF is Galois with group 

G = Zip x 7./t). Let Fo ~ E, FL be one of the p + 1 proper intermediate 

fields and X0 (resp., YL) the normalisation of X in F0 (resp., in EL). Then 

EL ~ Fo | L. In particular, this implies that  X0 is regular, because YL 
is regular. 

EL 

E Fo FL 

F 

If  the points of X0 which do not split completely in YL are dense in Xo, 
then the images of these points are dense in X and do not split completely 

in Y by Lemma 5 (4). It  remains to show that  there is a point x0 E X0 

that  does not split completely in YL. Then we can replace Y ~ X by 

YL -~ Xo, which satisfies the desired property EL ~ Fo | L. 
Since G is abelian, all points of YL over x have the same decomposition 

group H < G. The group H cannot be contained in Gal(ELIE) (resp., in 

Gal(EL IFL)), otherwise x would split completely in ElF (resp., FL IF); re- 

call that  x is a K-rat ional  point of X,  therefore it does not split completely 

in XL = X XKL. Therefore we may choose F0 such that  H >_ Gal(ELIFO). 

Then each pre-image x0 of x in X0 does not split completely in YL ~ Xo, 

as desired. 

�9 X is a curve: Since x is regular on X there is a system of parameters  

a l , . . . ,  aa for the regular local ring .4 = Ox,~. The equations a2 . . . . .  

an = 0 define a regular curve C in an attine neighbourhood of x in X.  
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The parameters  can be chosen such that  C meets any given open subset 

of X (since X is irreducible). 

As Y --+ X is @tale the pre-image D of C in Y is @tale over C. Furthermore 

x has only one pre-image in D, since deg(Y --+ X)  -- p. Therefore D is 

irreducible. It  is the normalisation of C in the function field of D. Now 

replace Y -+ X by D -+ C. 

Conclusion of the proof: We have reduced to the case that  E and F are function 

fields of one variable and E = F | L, where L I K  is Galois of prime degree 

p. Thus a point x'  E X splits completely in Y -+ X,  iff its residue field a(x')  

contains L. Then the point has a degree which is divisible by p. It  remains to 

show that  there are infinitely many x ~ E X such that  a(x  I) does not contain L. 

This follows from the lemma below, because the given point x of X is K-rational.  

LEMMA 6: Let C be a regular curve over a field K .  I f  there is a point x of  C 

whose degree is not divisible by a prime p, then there are infinitely many. 

Proof." The proof is the same as for Proposition 1 in [4]. For the convenience 

of the reader, we reproduce it here. Recall that  the degree of a point x E C is 

deg(~(x)[K).  

We may assume C is complete. Let X l , . . . ,  xm be additional points of C. Use 

the weak approximation theorem to choose f in the function field of C which 

has a simple zero at x and value 0 at the points X l , . . . ,Xm.  Then div(f )  = 
n k x + ~ j = l  JYJ for some additional distinct points Y l , . . . ,  Yn. It follows that  

n 

0 = deg(div(f))  = deg(x) + ~ kj deg(yj). 
j = l  

As deg(x) is not divisible by p, there must be one of the yj whose degree is not 

divisible by p. So C has infinitely many points of degree prime to p. II 
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